A Puzzling Project: Computerized
Rubik’s Cube Generator and
Manipulator

Jacob Anderson

December 13, 2016

DECEMBER 13, 2016 JACOB ANDERSON

1 Abstract

My project was to design a 3 dimensional Rubik’s Cube that can
be randomized by the computer and manipulated by the user.
In addition, the program is able to generate cubes of varying
sizes, eg. 2x2, 3x3, 5xbH, etc. Lastly, the program has some
ability to solve the Rubik’s Cube by itself. I used JavaScript to
write my program in, so that users can manipulate it from any
web browser without needing to download any special software.

Figure 1: A Rubik’s Cube

2 Background

There are two main reasons why I chose to create a virtual Ru-
bik’s Cube for my project. First, [have always been interested in
puzzles, and the Rubik’s Cube is a very well known puzzle that
is recognizable for almost anybody. Second, since I already had
experience in coding, I was seeking a challenge, and I had no-
ticed that other students in the past have attempted to create
virtual Rubik’s Cubes, and to my knowledge have been com-
pleted in JavaScript. In addition, none have been attempted
in sizes other than the standard 3x3. Therefore, I can build
from the past Rubik’s Cube projects while adapting them to

DECEMBER 13, 2016 JACOB ANDERSON

JavaScript and adding the additional functionality of different
sized cubes.

3 About the Rubik’s Cube

The Rubik’s Cube is a 3D combination puzzle invented by Erno
Rubik, a Hungarian sculptor and professor of architecture, in
1974 [1]. The traditional (3x3) Rubik’s Cube consists of six
faces, each one covered in nine stickers of a different color. An
internal mechanism allows for individual faces to be rotated
without the Cube falling apart. The goal of the puzzle is to
take a scrambled Cube (i.e one in which the colors have been
mixed up) and perform a series of rotations until each face is
returned to having only one color. Since the invention of the
traditional Rubik’s Cube, many variations have been made; the
most notable being Rubik’s Cubes of different sizes, such as 2x2,
4x4, 5x5, etc. The traditional way to solve a Rubik’s Cube is by
holding it so that three faces are shown: the left face, the right
face, and the top face, as shown in Figure 1. I have designed my
program to maintain this positioning at all times.

Figure 2: A 4x4 Rubik’s Cube

DECEMBER 13, 2016 JACOB ANDERSON

4 Cube Generation

The Rubik’s Cube is generated using three.js, which itself uses
WebGL. It is comprised of a 3-dimensional matrix of cublet ob-
jects (the number of which is determined by the size of the cube).
For convenience, each cublet is identical; all of the cublets have
all six colors, because if the program works correctly, the colors
of the internal faces will never be seen, so they do not matter.
Each cublet is sized at one unit in each dimension. In Cubes of
odd numbered size, the center cublet is centered at the origin,
and each other cublet is centered at locations one unit apart; for
example, (0,1,1) or (-1,0,1). For Cubes of even numbered size,
in order to keep the Cube centered at the origin, each cublet is
located every half unit; for example, (0.5,0.5,-0.5) would be the
location of a cublet. This way, the origin is the intersection point
of the central four cublets. Lastly, In order for Rubik’s Cubes
of all sizes to not appear too large or too small to manipulate, I

programmed the camera to zoom in or out based on the size of
the Cube.

Figure 3: A randomized Rubik’s Cube

DECEMBER 13, 2016 JACOB ANDERSON

size

Randomize

Solve

Close Controls

Figure 4: My user interface, implementing dat.GUI

5 User Manipulation

I have programmed four different methods of manipulating the
Rubik’s Cube. The first method is manually rotating sections of
the Cube; this is done by clicking and holding the desired section
with the mouse and moving it in the desired direction. In order
to accomplish this in the program, I use the raycaster function,
which creates a ray between the camera and the mouse, and
then it finds every object that intersects said ray. I then use the
intersecting face of the closest intersected object to determine
which face of the Cube will be rotated, and I use the direction
of movement of the mouse to determine the axis around which
that face will rotate and in which direction.

Secondly, the user can press the arrow keys on the keyboard to
rotate the entire Cube 90 degrees in the desired direction. The
reason I designed it to rotate a full 90 degrees is to maintain the
traditional positioning of the Rubik’s Cube.

The third method is a slider where the user can adjust the
size, and a new Cube of that size will be generated. The fi-
nal method is two buttons the user can click on, labelled Ran-
domize and Auto-Solve, which cause the program to generate a
new randomized Cube and to solve the Cube by itself, respec-
tively. In order to implement the slider and buttons, I am using
dat.GUI, a lightweight graphical interface for changing variables
in JavaScript [2].

DECEMBER 13, 2016 JACOB ANDERSON
6 Randomization and Solving

In order to randomize the Cube, the program conducts a series
of random rotations to shuffle the cube. In order to achieve a
solved Cube, my program does not actually solve the Cube in
the same way a human would, because this would be extremely
difficult to program. Instead, it simply generates a new Rubik’s
Cube of the current size in the solved position.

7 Obstacles

Unfortunately, my project currently is not fully operational, due
to a few issues in the program. First, once the user has begun
rotating the faces of the Cube, those faces begin to act different
from the unrotated faces, wherein they no longer rotate properly.
I have not yet found the root cause of this issue. Second, once
the user has changed the size of the Cube, it can no longer
be manipulated with the mouse. I believe this is relating to
poor compatibility between dat.GUI and the animate function
in three.js, but I have not yet been able to repair this either. If
given more time, fixing these issues would be my next task.

DECEMBER 13, 2016 JACOB ANDERSON

References

[1] https://en.wikipedia.org/wiki/Rubik’s_Cube.

[2] https://github.com/dataarts/dat.gui.

https://en.wikipedia.org/wiki/Rubik's_Cube
https://github.com/dataarts/dat.gui

	Abstract
	Background
	About the Rubik's Cube
	Cube Generation
	User Manipulation
	Randomization and Solving
	Obstacles

